
ICCG 2018, Tehran, February 27, 2018

Progressive Algorithm For Euclidean Minimum Spanning Tree

Amir Mesrikhani ∗ Mohammad Farshi ∗ Mansoor Davoodi †

Abstract

Designing efficient algorithms that process massive data
is a challenging task. The progressive algorithms are
methods to handle massive data efficiently. In these al-
gorithms, partial solutions are reported to user in some
middle steps that approximates the final solution. The
user can decide whether to continue the running of the
algorithm based on the error of the partial solutions. In
this paper, we propose a progressive algorithm for com-
puting Euclidean minimum spanning tree of a set of n
points in the plane that consists of O(log n) steps. The
error of the partial solution in step r is O(1− 4r

n−1α
−1),

where α is the aspect ratio of the point set.

1 Introduction

One method to process massive data efficiently is de-
signing algorithms that solve a problem with a massive
input data interactively with users. Progressive algo-
rithms are one of these interactive methods. In these
algorithms, partial solutions, whose error are measured
by an error function (err), are reported to user in par-
ticular steps. The error function err takes a partial
solution as an argument and returns non-negative value
that represents the error value of the argument. Based
on the error value of the partial solution in each step,
the user can decide to stop the algorithm or continue
toward a partial solution with smaller error value. The
convergence speed of the partial solutions to the final
solution is determined by a convergence function fconv.
The function fconv takes step number r as an argument
and returns an upper bound of the error value of the
partial solution in step r.

Formally, in 2015, Alewijnse et al. [1] introduced the
following defintion for progressive algorithms:

Definition 1 A progressive algorithm is an algorithm
that produces partial solution sr in step r such that:

err(sr) ≤ fconv(r).

∗Combinatorial and Geometric Algorithms Lab., De-
partment of Mathematical Sciences, Yazd University, Yazd,
Iran, mesrikhani@stu.yazd.ac.ir, mfarshi@yazd.ac.ir

(corresponding author)
†Department of Computer Science and Information Technol-

ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran, mdmonfared@iasbs.ac.ir

Computing Euclidean Minimum Spanning Tree
(EMST) of a set of points is a classical problem that
has many applications in designing low-cost road net-
work and designing VLSI circuit. In this paper, we aim
to design a progressive algorithm to compute EMST of
a set of points in the plane.

1.1 Our results

For a set of n points in the plane, we propose a pro-
gressive algorithm for computing EMST with O(log4 n)
steps and the most time-consuming step takes O(n2)
time. In step r, our algorithm produces a partial solu-
tion whose error is O(1− 4r

n−1α
−1). The value α denotes

the apsect ratio of input point set which is the ratio of
the maximum pairwise distance and the minimum pair-
wise distance of the input points.

1.2 Related work

The framework of the progressive algorithm was intro-
duced by Alewijnse et al. in 2015 [1]. They stud-
ied some fundamental problems in computational ge-
ometry like finding convex hull of a set of points and
computing k-popular regions for a set of trajectories.
Also, progressive algorithms are studied in other con-
texts and the results could be found in [9, 10]. As
aforementioned, a progressive algorithm produces ap-
proximation solution in each step . Several approxi-
mation algorithms have been proposed for computing
Minimum Spanning Tree (MST) [8]. Clarkson et al. [6]
studied finding EMST of a set of points in Rd. They
proposed (1 + ε)-approximation algorithm that takes
O(n(log n + (1/ε) logα)) time for d = 3. Czmuaj et
al. [7] focused on approximating the weight of EMST
in sublinear time. Their algorithm approximates the
weight in Rd in O(

√
npoly(1/ε)) time with high proba-

bility, where poly denotes a polynomial function based
on 1/ε. For a given connected graph of an average
degree d, Chazelle et.al [5] presented probabilistic al-
gorithm in O(dωε−2 log dω

ε) time to approximate the
weight of MST with error at most ε, where ω is the
maximum weight of edges of the input graph. In Haus-
dorff metric, Alvarez et al. [2] proposed an algorithm
in O(τ1/εd log(1/εd)) time to approximate the weight
of MST with error at most ε, where τ denotes the time
needed to compute MST of points in a fixed metric Lp.
Some randomized algorithms for approximating MST

1st Iranian Conference on Computational Geometry

v1

v2

v3 v4

v5

S1

S2

S3

S4

S5

Tr

Figure 1: The red points are corresponding points of
the super vertices. Tr is the partial solution in step r of
the algorithm.

could be found in [4, 8]. Also, some results for approx-
imating MST in the modern parallel models such as
MapReduce could be found in [3].

2 Progressive algorithm for computing EMST

In this section, we aim to propose a progressive algo-
rithm for computing EMST of a set P of n points in
the plane. Before describing the algorithm, the par-
tial solution and error function should be defined. Let
S = {S1, ...Sk} be a partition of set P into the subsets
Si 6= ∅ such that Si ∩ Sj = ∅ for any 1 ≤ i 6= j ≤ k.
For each set Si ∈ S, we assign a super vertex vi. The
super vertex vi contains an arbitary point pi ∈ Si. Let
Er be a set of edges of a complete graph induced by
V = {v1, . . . , vk}. The weight of any edges (vi, vj) ∈ Er

is defined by the Euclidean distance between pi and pj .
Consider the graph Gr = (V,Er), the tree Tr in step r
of the algorithm is an EMST of Gr and the weight of
Tr denotes the partial solution (see Figure 1).

Let wr be the weight of partial solution Tr in step r
and wopt be the weight of the exact EMST of P . The
error function of our progressive algorithm is defined as
follows:

err(Tr) = 1− wr

wopt
. (1)

The Eq. (1) is a decreasing function. To prove this, we
use the following lemma.

Lemma 1 Let wr be the weight of a partial solution Tr
and wopt be the weight of the exact EMST (Texact) of
P . We have wr ≤ wopt.

Proof. Let V = {v1, . . . , vk} and E = {e1, . . . , ek−1}
be the set of vertices and edges of Tr respectively. Con-
sider an edge ei = (vt, vl), and the corresponding sets St

and Sl. We will show that pt and pl connect by a path in
Texact whose weight is greater or equal to ei. Two cases

pt

pl
emin

ei

H1

H2

Figure 2: Illustration the first case of the proof of
Lemma 1.

may be occured. First, the points of St and Sl connect
by an edge emin in Texact which is the minimum length
edge between the points in St and Sl. Let H1 and H2

be two paths that connect endpoints of emin to pt and
pl. By triangle inequality, the weight of ei is less than
or equal to the weight of the path H1

⋃
H2

⋃
emin (see

Figure 2).
Second, there is a path H that connecting St and Sl

through at least one subset Sk. In this case, by triangle
inequality the weight of H is greater than ei (see Figure
3). So we have wr < wopt. �

The idea of our progressive algorithm is the follow-
ing: in any step r, we divide the points into 4r disjoint
sets and pick an arbitrary point from each set. Finally,
EMST on the selected points is reported to the user as
the partial solution. To divide the points into disjoint
sets, we use kd−tree approach to partition the plane by
finding median vertical and horizontal lines with respect
to the x and y coordinates.

So, in the first step of our progressive algorithm, we
do as follows. Start by finding median points accord-
ing to the x and y coordinates. Then draw vertical and
horizontal lines passing through median points. These
lines divide P into four subsets S1 = {S1, S2, S3, S4}.
For each Si ∈ S1 i = 1, . . . , 4 , assign a super ver-
tex vi that stores one point from Si randomly. Con-
struct complete graph induce by vertices v1, v2, v3, v4
and with edge weight correspond to the Euclidean dis-
tance between associate points of super vertices. Com-
pute EMST of this graph (T1) and report the weight of
T1 as the first partial solution.

In generic step r, we do as follows:

1. For each subset Si ∈ Sr−1 do the following steps:

(a) Divide Si into four subsets with resepct to me-
dian lines according to x and y coordinates.
Add these subsets to Sr.

(b) Assign a super vertex for each new created
subset and store a random point from corre-
sponding subsets in it.

ICCG 2018, Tehran, February 27, 2018

pt

pl

H
Sk

ei

Figure 3: Illustration the second case of the proof of
Lemma 1.

2. Let Enew be a set of edges that created by connect-
ing each new vertex v to all vertices of Tr−1.

3. For each new super vertex v and corresponding
edges Enew, Tr=Update-EMST (Tr−1,v,Enew).

4. Report the weight of Tr to the user.

To describe how we can update Tr−1 to obtain Tr
in step 3, the following subproblem could be defined.
Let T be an EMST of a graph G that has already been
computed and v be a new vertex. Add v to T and
connect it to all vertices of T and call the new graph
by T ′ . The problem is designing an efficient algorithm
to compute an EMST of T ′. To this end, we use the
following lemma..

Lemma 2 Let e be an edge that has minimum weight
among all new edges incident to a new vertex v. Then
EMST of T ′ must contain e.

Proof. Let T ′m denotes the EMST of T ′. Assume to
the contrary that T ′m does not contain e. So T ′m must
contain an edge e′ with the weight greater than e. By
adding e to T ′m, a cycle that contains both e and e′ will
be obtained. By deleting e′ from T ′m, we get a spanning
tree where its weight is less than T ′m. This contradicts
to our assumption that T ′m is an EMST. �

The algorithm uses the above lemma as the main
strategy. Among all new edges, the algorithm finds the
edge with minimum weight and adds it to T . According
to above lemma, this edge belongs to EMST of T ′. By
this addition, T ′ will be a spanning tree but not neces-
sarily with the minimum weight. Now, each new edge
is added one by one to T . Suppose (vi, vj) is added to
T and w((vi, vj)) denotes its weight. This graph is a
spanning tree, so there is a unique path between vi and
vj . In this path, the algorithm finds an edge emax with
maximum weight. If w(emax) > w((vi, vj)) then emax

is deleted from T and we obtain a spanning tree with
smaller weight. Otherwise, (vi, vj) is deleted from T ′

and the current spanning tree is preserved. This pro-
cess is executed for all new edges. Finally, EMST of
T ′ is computed. To obtain the unique path between
vi and vj and update T , we can traverse T similar to
depth-first traversal of a tree. The Algorithm Update-
EMST is what we need to do in step 3 of our progressive
algorithm.

Algorithm 1: Update-EMST (T ,v,E)

Output: EMST of T
1 Find an edge (v, vi) with minimum edges among E;
2 Add (v, vi) to T ;
3 emax = (v, vi);
4 DFS(vi, emax, T, E);
5 return T ;

To implement the depth-first traversal of T , we use
an array Tmax[1, . . . , n] such that Tmax[i] denotes the
edge with the maximum weight among the edges in the
unique path between v and vi. The vertex v is the first
argument that DFS(.) is invoked by it.

Algorithm 2: DFS(v, emax, T, E)

1 Mark v as a visited vertex;
2 for each vertex vi adjecent to v do
3 if vi is not marked as visited vetex then
4 if w(v, vi) > w(emax) then
5 Tmax[i] = (v, vi);

6 else
7 Tmax[i] = emax;

8 if a new edge ei exists in E then
9 if w(ei) < Tmax[i] then

10 Add ei to T ;
11 Delete Tmax[i] from T ;
12 Tmax[i] = ei;

13 Call DFS(vi, Tmax[i], T, E);

In the following lemma, we analyze the convergence
function of our progressive algorithm.

Lemma 3 Let Tr be a partial solution in step r. Then
err(Tr) ∈ O(1 − 4r

n−1α
−1), where α is the aspect ratio

of the input points.

Proof. It is clear that, in step r of the algorithm, 4r

super vertices are created. So the partial solution Tr
must contain 4r − 1 edges. Consider the error function
defined in Eq. (1). Let C and D be the minimum
pairwise and the maximum pairwise distance of points
in the input point set P respectively. Trivially, wr ≥

1st Iranian Conference on Computational Geometry

(4r− 1)C and wopt ≤ D(n− 1). So, the upper bound of
the error value of Tr is:

err(Tr) ≤ 1− (4r − 1)C

D(n− 1)
≤ 1− 4r

n− 1
α−1.

�

Remark 1: Our progressive algorithm generates
the monotone partial soltuions. It means that, if Tr
and Tr+1 be two partial solutions in two consecutive
steps r and r + 1, then wr ≤ wr+1. Also,

fconv(r) ≤ fconv(r + 1).

This property obtain directly from Lemma 1 and
Lemma 3.

Remark 2: The idea of our progressive algorithm is
approximating the weight of EMST by choosing a subset
of P . This idea is similar to a framework called Coresets
introduced by Agarwal et al. [10]. One possible method
is using this approach to pick a small subset of P in each
step but Alvarez et al. [2] showed that this framework
does not work when we want to approximate the weight
of EMST.

Theorem 4 There exists a progressive algorithm for
computing EMST of a set of n points in the plane with
O(log4 n) steps. The algorithm takes O(n2) time in the
most time-consuming step and the convergence function
of the algorithm is O(1− 4r

n−1α
−1) according to the error

function defined in Eq. (1).

Proof. The convergence function is obtained from
Lemma 3. Let Sr = {S1, . . . , Sk} be the decomposi-
tion of P in step r, where k = 4r and |Si| denotes the
cardinality of Si. By our approach for decomposition,
each Si ∈ Sr, is divided to four equal size subsets. So
in step r, |Si| ≤ n

4r . Therefore the number of steps is
O(log n).

The lines 1 and 2 in step r of the progressive algorithm

takes
k∑

i=1

|Si| = O(n) time, since Si ∩ Sj = ∅ holds for

all 1 ≤ i 6= j ≤ k.
For line 3, we know that Tr−1 has 4r−1 − 1 edges.

By adding a new vertex v to Tr−1, we have 4r−1 new
edges. So, finding minimum edge takes O(4r−1) time.
To update Tr−1 when v is added, we need to depth-first
traversal of Tr−1 that takes O(4r−1) time. Therefore,
updating Tr−1 for each new added vertex takes O(4r−1)
time in total. We have (4r − 4r−1) = 3 × 4r−1 new
vertices in step r. The total time of updating Tr−1 is:

3× 4r−1 ×O(4r−1) ∈ O(42r−2).

Since r = O(log4 n), so step r never takes more than
O(n2) time. �

3 Conclusion

In this paper, a progressive algorithm is proposed for
computing the Euclidean minimum spanning tree of a
set of n points in the plane with O(log4 n) steps and the
most time-consuming step takes O(n2) time. The upper
bound on the error value of the generated partial solu-
tion in step r is O(1 − 4r

n−1α
−1), where α is the aspect

ratio of points. One interesting future work is design-
ing a progressive algorithm with convergence function
that only depends on the size of input especially when
α is unbounded. Developing the progressive algorithm
for other problems with a massive input data are also
interesting.

References

[1] S. P. A. Alewijnse, T. M. Bagautdinov, M. de Berg,
Q. W. Bouts, A. P. ten Brink, K. Buchin, and M. A.
Westenberg. Progressive geometric algorithms. Journal
of Computational Geometry, 6(2):72–92, 2015.

[2] V. Alvarez and R. Seidel. Approximating the minimum
weight spanning tree of a set of points in the hausdorff
metric. Computational Geometry, 43(2):94–98, 2010.

[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev.
Parallel algorithms for geometric graph problems. In
Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 574–583. ACM, 2014.

[4] P. Berenbrink, B. Krayenhoff, and F. Mallmann-
Trenn. Estimating the number of connected compo-
nents in sublinear time. Information Processing Letters,
114(11):639–642, 2014.

[5] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approxi-
mating the minimum spanning tree weight in sublinear
time. SIAM Journal on computing, 34(6):1370–1379,
2005.

[6] K. L. Clarkson. Fast expected-time and approximation
algorithms for geometric minimum spanning trees. In
Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 342–348. ACM, 1984.

[7] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. New-
man, R. Rubinfeld, and C. Sohler. Approximating the
weight of the euclidean minimum spanning tree in sub-
linear time. SIAM Journal on Computing, 35(1):91–
109, 2005.

[8] A. Gupta and J. Könemann. Approximation algorithms
for network design: A survey. Surveys in Operations
Research and Management Science, 16(1):3–20, 2011.

[9] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Efficient and
progressive group steiner tree search. In Proceedings of
the 2016 International Conference on Management of
Data, pages 91–106. ACM, 2016.

[10] A. Mesrikhani and M. Farshi. Progressive sorting in
the external memory model. In 48th Annual Iranian
Mathematics Conference (AIMC48), August 2017.

